Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Real Analysis Subject Code: 4SC06RAC1

Branch: B.Sc.(Mathematics)

	Subject	Code: 4SC06RAC1	Branch: B.Sc.(Mathema	tics)			
	Semester Instructio		Time : 2:30 To 5:30	Marks: 70			
	(1) U) Use of Programmable calculator & any other electronic instrument is prohibited.					
	(2) 1	(2) Instructions written on main answer book are strictly to be obeyed.					
		(3) Draw neat diagrams and figures (if necessary) at right places.					
	(4) Assume suitable data if needed.						
Q-1	l	Attempt the following questions:			(14)		
τ-	a)	Define: p-series.			(1)		
	b)	Give one example of oscillating se	quence.		(1)		
	c)	True/false: Any subsequence of co	-	vergent.	(1)		
	d)	Define: Cauchy sequence.			(1)		
	e)	Is the limit point of sequence uniqu	ue?		(1)		
	f)	True/false: For the series $\sum u_n$ if l divergent.	$\lim_{n\to\infty} u_n \neq 0$ then the se	ries must be	(1)		
	g)	Give one example of oscillating se	quence.		(1)		
	h)	Define: Infinite series.			(1)		
	i)	Write the range of the sequence {			(1)		
	j)	Define : Darbouxe's lower sum of			(1)		
	k)	Write the statement of the compari	•	ce of series.	(2)		
	l)	State sandwich theorem for the sec	luence.		(2)		
Atte	empt any f	our questions from Q-2 to Q-8					
Q-2	2	Attempt all questions			(14)		
-		State and prove Bolzeno-weiestras	s theorem for sequence.		(7)		
	b)	Prove that A necessary and sufficient sequence that it is bounded.	ent condition for the conve	ergence of monotonic	(7)		
Q-3	2	Attempt all questions			(14)		
Υ - ,	, a)	State and prove Cauchy's general	orinciple of convergence of	of sequence	(6)		
	,	Using $\varepsilon - m$ definition prove the		n sequence.	(5)		
	0)	(1) $\lim_{n \to \infty} \frac{3 + 2\sqrt{n}}{\sqrt{n}} = 2$	lat		(5)		
		(2) $\lim_{n\to\infty} \sqrt[n]{a} = 1$, where a	n > 0.				
	c)	Test the convergence for the series			(3)		

Page 1 || 2

		(1) $\frac{1}{2} + \frac{1}{2.2^2} + \frac{1}{3.2^3} + \frac{1}{4.2^4} + \dots$		
		$(2) \frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$		
Q-4	a)	Attempt all questions Prove that the sequence $\{s_n\}$, where $s_n = \left(1 + \frac{1}{n}\right)^n$, is convergent and	(14) (6)	
	b)	$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \text{ lies between 2 and 3.}$ Show that the sequence $\left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}\right]$ converges to zero.	(4)	
	c)	Find using Riemann sum $\int_{-1}^{1} x dx$.	(4)	
Q-5 Q-6	a) b)	Attempt all questions Prove that A positive term series $\sum \frac{1}{n^p}$ is convergent if and only if $p > 1$. State and prove D'Alembert Ratio test for the convergence of series. Attempt all questions	(14) (8) (6) (14)	
0.7	a) b)	State and prove Leibnitz test for alternating series . If <i>f</i> is bounded and integrable on [<i>a</i> , <i>b</i>], then show that $ f $ is also bounded and integrable on [<i>a</i> , <i>b</i>]. Moreover $\left \int_{a}^{b} f dx\right < \int_{a}^{b} f dx$.	(8) (6) (14)	
Q-7	a)	Attempt all questions Show that the bounded function f is Integrable on $[a, b]$ if and only if for each $\varepsilon > 0$ there exist $\delta > 0$ and partition P with $\mu(P) < \delta$ and	(14) (7)	
	b)	$U(P, f) - L(P, f) < \varepsilon$. Show that constant function <i>K</i> is integrable on $[a, b]$ and $\int_a^b k dx = k (b - a)$.	(4)	
	c)	Show that the function defined by $f(x) = \begin{cases} 0 & if x is rational \\ 1 & if x is irrational \end{cases}$ is not	(3)	
		integrable on any interval.	(14)	
Q-8	a)	Attempt all questions If f_1 and f_2 are two integrable functions on [a, b].show that $f_1 + f_2$ is also integrable on [a,b] further $\int_{a}^{b} (f_1 + f_2) dx = \int_{a}^{b} f_1 dx + \int_{a}^{b} f_2 dx$	(14) (6)	
	b)	State and prove necessary and sufficient condition for integrability of bounded function on [a, b].	(4)	

c) Show that 3x+1 is integrable on [1,2] and $\int_{1}^{2} (3x+1) dx = \frac{11}{2}$. (4)

Page 2 || 2

